Singhal, P., Veturi, Y., Dudek, S., Lucas, A., Frase, A., Schrodi, S., Fasel, D., Weng, C., Pendergrass, R., Schaid, D.J., Kullo, I.J., Dikilitas, O., Sleiman, P., Hakonarson, H., Moore, J., Williams, S., Ritchie, M.D., and Verma, S.S “Evidence of epistasis in regions of long-range linkage disequilibrium across five complex diseases in the UK Biobank and eMERGE datasets” – American Journal for Human Genetics 110(4), 575-591 (2023) https://pubmed.ncbi.nlm.nih.gov/37028392/
Kanoni, S. *, Graham, S.E. *, Wang, Y. *, Surakka, I. *, Ramdas, S. *, Zhu*, X., Clarke, S.L., Bhatti, F.K., Vedantam, S., Winkler, T.W., Locke, Marouli, E., Zajac, G.J.M., Wu, K.H., Ntalla, I., Hui, Q. D., Klarin, D., Hilliard, A., Wang, Z., Xue, C., Thorleifsson, G., Helgadottir, A., Gudbjartsson, D.F., Holm, H., Olafsson, I., Hwang, M.Y., Han, S., Akiyama, M., Sakaue, S., Terao, C., Kanai, M., Zhou, W., Brumpton, B.M., Rasheed, H., Havulinna, A.S., Veturi, Y., et al. … and Willer C., Peloso G.M. “Implicating genes, pleiotropy and sexual dimorphism at blood lipid loci through trans-ancestry meta-analysis” – Genome Biology 23, 268 (2023) https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02837-1
Yengo, L.*, Vedantam, S.*, …, Veturi, Y., et al., … and Wood, A., Visscher, P., and Hirschhorn, J. “A saturated map of common genetic variants associated with human height from 5.4 million individuals of diverse ancestries” – Nature 610, 704–712 (2022) https://www.nature.com/articles/s41586-022-05275-y
Ramdas, S.*, Judd, J.*, Graham, S.E.*, Kanoni S*, Wang Y., Surakka, I., Wenz, B., Clarke, S.L., Chesi, A., Wells, A., Bhatti, F.K., Vedantam, S., Winkler, T.W., Locke, Marouli, E., Zajac, G.J.M., Wu, K.H., Ntalla, I., Hui, Q. D., Klarin, D., Hilliard, A., Wang, Z., Xue, C., Thorleifsson, G., Helgadottir, A., Gudbjartsson, D.F., Holm, H., Olafsson, I., Hwang, M.Y., Han, S., Akiyama, M., Sakaue, S., Terao, C., Kanai, M., Zhou, W., Brumpton, B.M., Rasheed, H., Havulinna, A.S., Veturi, Y., et al … and Willer C., Brown, C.,“A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids” – American Journal of Human Genetics 109(8), 1366-1387 (2022) https://pubmed.ncbi.nlm.nih.gov/35931049/
Zhang, X, Lucas, A.M., Veturi, Y., Drivas, T.G., Bone W.,Verma, A., Chung, W.K., Crosslin, D., Denny, J.C., Fasel, D., Hakonarson, H., Hebbring, S., Jarvik, G.P., Kullo, I., Larson, E.B., Pendergrass, S., Rasmussen-Torvik, L.J., Schaid, D.J., Sleiman, P., Smoller, J.W., Stanaway, I.B., Wei, W., Weng, C., Ritchie, M.D. “Large-scale genomic analyses reveal insights into pleiotropy across circulatory system diseases and central nervous system disorders” –Nature Communications 13, 3428 (2022) https://www.nature.com/articles/s41467-022-30678-w.pdf
Wen, J., Fu, H.Y.C., Tosun, D., Veturi, Y., Yang, Z., Abdulkadir, A., Mamourian, E., Srinivasan, D., Bao, J., Erus, G., Shou, H., Habes, M., Doshi, J., Varol, E., Mackin, S.R., Sotiras, A., Fan, Y., Saykin, A.J., Sheline, Y.I., Shen, L., Ritchie, M.D., Wolk, D.A., Albert, M., Resnick, S.M., Davatzikos, C. “Multidimensional representations in late-life depression: convergence in neuroimaging, cognition, clinical symptomatology and genetics” – JAMA Psychiatry 79(5), 464-474 (2022) https://jamanetwork.com/journals/jamapsychiatry/article-abstract/2789902
Graham, S., Clarke, S.L., Wu, K.H., Kanoni, S., Zajac, G.J.M., Ramdas,S., Surakka, I., Ntalla, I., Vedantam, S., Winkler, T., Locke, A.E., Marouli, E., Hwang, M.Y., Han, S., Narita, A., Verma, A., Trivedi, B., Martin, H.C., Hunt, K.A., Hui, Q., Klarin, D., Zhu, X., Thorleifsson, G., Helgadottir, A., Gudbjartsson, D.F., Holm, H., Olafsson, I., Akiyama, M., Sakaue, S., Terao, C., Kanai, M., Zhou, W., Brumpton, B.M., Rasheed, H., Ruotsalainen, S.E., Havulinna, A.S., Veturi, Y., et al … and Willer, C. “The power of genetically diverse individuals in genome-wide association studies of blood lipid levels” – Nature 600, 675–679 (2021) https://www.nature.com/articles/s41586-021-04064-3
Veturi, Y., Lucas, A., Bradford, Y., Hui, D., Dudek, S., Theusch, E., Verma, A., Miller, J.E., Kullo, I., Hakonarson, H., Sleiman, P., Schaid, D., Stein, C.M., Velez Edwards, D.R., Feng, Q., Wei, Q., Medina, M.W., Krauss, R., Hoffmann, T.J., Risch, N., Voight, B.F., Rader, D.J., Ritchie, M.D. “Unified framework identifies novel replicating links between plasma lipids and diseases from Electronic Health Records across large-scale cohorts”. Nature Genetics 53, 972–981 (2021)https://www.nature.com/articles/s41588-021-00879-y
Miller, J., Veturi, Y., Ritchie, M.D. “Innovative strategies for annotating the “relationSNP” between variants and molecular phenotypes”. BioData Mining 12:10 (2019) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518798/
Veturi, Y. †, Yi, N., Huang, W., Vazquez A.I., de los Campos, G. “Modeling Heterogeneity in the Genetic Architecture of Ethnically Diverse Groups Using Random Effect Interaction Models”. Genetics 211(4):1395-1407 (2019) https://www.genetics.org/content/genetics/211/4/1395.full.pdf
Zhang, X.*, Veturi, Y.*, Verma, S.S., Bone, W., Verma, A., Lucas, A., Hebbring, S., Denny, D.C., Stanaway, I.B., Jarvik, G.P., Crosslin, D., Larson, E.B., Rasmussen-Torvik, L., Pendergrass, S.A., Smoller, J.W., Hakonarson H., Sleiman P., Weng C., Fasel D., Wei W., Kullo, I., Schaid, D. Chung, W.K., Ritchie, M.D. “Detecting potential pleiotropy across cardiovascular and neurological diseases using univariate, bivariate, and multivariate methods on 43,870 individuals from the eMERGE network”, Pacific Symposium onBiocomputing 24:272-283 (2018) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457436/
Li, B., Veturi, Y., Bradford, Y., Verma S.S., Verma, A., Lucas, A.M., Haas, D.W., Ritchie, M.D. “Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies”, Pacific Symposium onBiocomputing 24:296-307 (2018) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417797/
Cha, E.D.*, Veturi, Y.*, Agarwal, C., Patel, A., Arbabshirani, M.R., Pendergrass, S.A. “Using Adipose Measures from Health Care Provider-Based Imaging Data for Discovery”, Journal of Obesity 10.1155/2018/3253096 (2018) https://www.hindawi.com/journals/jobe/2018/3253096/
Verma, S. S., Lucas, A., Zhang, X., Veturi, Y., Dudek, S., Li, B., Li, R., Kim, D., Ritchie M. D. “Collective feature selection to identify important variables for epistatic interactions”BioData Mining11(5) (2018) https://doi.org/10.1186/s13040-018-0168-6
Veturi, Y., and Ritchie, M.D. “How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?”,Pacific Symposium in Biocomputing 23:228-239 (2018) https://pubmed.ncbi.nlm.nih.gov/29218884/
Li, B., Verma, A., Verma, S., Veturi, Y., Bradford Y., and Ritchie, M.D., “Evaluation of PrediXcan for GWAS prioritization and gene expression prediction”,Pacific Symposium in Biocomputing 23:448-459 (2018) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749400/
Vazquez AI, Veturi, Y., Behring, M., Shrestha, S., Kirst, M., Resende Jr., M.F.R., de los Campos, G., “Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast Cancer with use of Whole Genome Multi–Omic Profiles”,Genetics 203(3) (2016) https://www.genetics.org/content/genetics/203/3/1425.full.pdf
de los Campos, G., Veturi, Y., Vazquez, A I., Lehermeier, C., and Pérez–Rodríguez, P., “Incorporating Genetic Heterogeneity in Whole Genome Regressions Using Interactions”, Journal of Agricultural, Biological, and Environmental Statistics 20(4) pp. 467–490 (2015) 10.1007/s13253–015–0222–5Meritorious Paper in JABES by an IBS Member for 2015–2016.
Vazquez, A.I., Klimentidis, Y.C., Dhurandhar, E.J., Veturi, Y., Perez–Rodriguez, P., “Assessment of Whole Genome Regression for Type II Diabetes”, PLOS One, 10(4):e0123818 (2015) DOI: 10.1371/journal.pone.0123818
Miller, S., Perez–Rodriguez, P., Veturi, Y., Simianer, H., de los Campos, G., “Effectiveness of Shrinkage and Variable Selection Methods for the Prediction of Complex Human Traits Using Data from Distantly Related Individuals”, Annals of Human Genetics 79(2), 122–135 (2015) DOI: 10.1111/ahg.12099
Veturi, Y., Kump, K., Walsh, W., Ott, O., Poland, J., Kolkman, J.M., Balint–Kurti, P.J., Holland, J.B., and Wisser, R.J., “Multivariate Mixed Linear Model Analysis of Longitudinal Data: An Information–Rich Statistical Technique for Analyzing Plant Disease Resistance”. Phytopathology 102(11), 1016–1025 (2012) DOI:10.1094/PHYTO-10-11-0268 “Top Papers of the Month” in Phytopathology for Nov 2012.
D’Souza, M.J., Alabed, G.J., Wheatley, J.M., Roberts, N., Veturi, Y., Bi, X., Continisio, C.H., “A Database developed from Information Extracted from Chemotherapy Drug Package Inserts to Enhance Future Prescriptions”, Conference on Computer Vision and Pattern Recognition Workshops IEEE Computer Society, 219–226 (2011) PMID:25302340 PMCID:pmc4187114
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.